Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 14, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170333

RESUMO

A Gram-stain-positive, rod-shaped, non-spore-forming, alkane degrading bacterium, designated DJM-14T, was isolated from oilfield alkali-saline soil in Heilongjiang, Northeast China. On the basis of 16 S rRNA gene sequencing, strain DJM-14T was shown to belong to the genus Nocardioides, and related most closely to Nocardioides terrigena KCTC 19,217T (95.53% 16 S rRNA gene sequence similarity). Strain DJM-14T was observed to grow at 25-35 °C, pH 7.0-11.0, in the presence of 0-6.0% (w/v) NaCl. The predominant respiratory quinone was MK-8 (H4) and LL-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major fatty acids were identified as iso-C16:0 and C18:1 ω9c. It contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the polar lipids. The genome (3,722,608 bp), composed of 24 contigs, had a G + C content of 69.6 mol%. Out of the 3667 predicted genes, 3618 were protein-coding genes, and 49 were ncRNAs. Digital DNA-DNA hybridization (dDDH) estimation and average nucleotide identity (ANI) of strain DJM-14T against genomes of the type strains of related species in the same family ranged between 18.7% and 20.0%; 68.8% and 73.6%, respectively. According to phenotypic, genotypic and phylogenetic data, strain DJM-14T represents a novel species in the genus Nocardioides, for which the name Nocardioides limicola sp. nov. is proposed and the type strain is DJM-14T (= CGMCC 4.7593T, =JCM 33,692T). In addition, novel strains were able to grow with n-alkane (C24-C36) as the sole carbon source. Multiple copies of alkane 1-monooxygenase (alkB) gene, as well as alcohol dehydrogenase gene and aldehyde dehydrogenase gene involved in the alkane assimilation were annotated in the genome of type strain DJM-14T.


Assuntos
Nocardioides , Fosfolipídeos , Fosfolipídeos/química , Nocardioides/genética , Solo , Filogenia , Campos de Petróleo e Gás , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/química , DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
2.
Antonie Van Leeuwenhoek ; 117(1): 18, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190009

RESUMO

A Gram-stain-positive, rod-shaped, non-spore-forming and non-motile bacterium, designated WY-20T, was isolated from a lakeside soil sample collected in Jiangxi Province, PR China. Growth was observed at 20-42 °C (optimum 30 °C), pH 5.0-8.0 (optimum pH 7.0) and salinity of 0-3.0% (w/v; optimum 0.5%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain WY-20T belongs to the genus Nocardioides and showed the highest sequence similarity (98.1%) to N. phosphati WYH11-7T, followed by N. cavernaquae K1W22B-1T (97.8%), N. marmoriterrae JOS5-1T (97.2%) and N. jensenii NBRC 14755T (97.1%). The average nucleotide identity and digital DNA-DNA hybridization values between strains WY-20T and N. phosphati WYH11-7T were 83.5% and 26.2%, respectively. The predominant fatty acids (≥ 10% of the total fatty acids) were C18:1ω9c, C17:0, C16:0, summed feature 8 (C18:1ω7c and/or C18: 1ω6c) and C17:1ω9c. The major menaquinone was MK-8 (H4). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unidentified phospholipids. In addition, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. Based on phenotypic, genotypic and phylogenetic pieces of evidence, strain WY-20T represents a novel species in the genus Nocardioides, for which the name Nocardioides jiangxiensis sp. nov. is proposed. The type strain is WY-20T (= GDMCC 4.317T = KACC 23379T).


Assuntos
Ácidos Graxos , Nocardioides , Filogenia , RNA Ribossômico 16S/genética , DNA
3.
Antonie Van Leeuwenhoek ; 117(1): 25, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261138

RESUMO

Strain KC13T, a novel desert-adapted, non-motile, Gram-stain-positive, rod-shaped, aerobic bacterium, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan and characterised by a polyphasic approach. Phylogenetic analysis based on 16S rRNA sequences revealed that strain KC13T was a member of the genus Nocardioides, and formed a distinct cluster with Nocardioides luteus DSM 43366T (99.3% sequence identity), Nocardioides albus DSM 43109T (98.9%), Nocardioides panzhihuensis DSM 26487T (98.3%) and Nocardioides albertanoniae DSM 25218T (97.9%). The orthologous average nucleotide identity and digital DNA-DNA hybridization values were in the range of 85.8-91.0% and 30.2-35.9%, respectively, with the type strains of closely related species. The genome size of strain KC13T was 5.3 Mb with a DNA G + C content of 69.7%. Comprehensive genome analyses showed that strain KC13T, unlike its close relatives, had many genes associated with environmental adaptation. Strain KC13T was found to have chemotaxonomic and phenotypic characteristics of members of the genus Nocardioides and some differences from phylogenetic neighbours. Based on the chemotaxonomic, genomic, phenotypic and phylogenetic data, strain KC13T represents a novel species of the genus Nocardioides, for which the name Nocardioides turkmenicus sp. nov. is proposed, and the type strain is KC13T (= JCM 33525T = CGMCC 4.7619T).


Assuntos
Actinomycetales , Nocardioides , Filogenia , RNA Ribossômico 16S/genética , Genômica , Solo , DNA
4.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959852

RESUMO

Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.


Assuntos
Actinobacteria , Poluentes Ambientais , Poluentes do Solo , Nocardioides , Biodegradação Ambiental , Nitrogênio
5.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917642

RESUMO

Three Gram-stain-positive, non-motile, short rod-shaped, catalase-positive and oxidase-negative actinomycete strains (SOB44T, SOB72T and SOB77T) were isolated from a deep-sea sediment sample collected from the Western Pacific Ocean. Cells of the three strains showed optimum growth at 30 °C and pH 7.0. Strains SOB44T, SOB72T and SOB77T could tolerate up to 10, 9 and 9 % (w/v) NaCl concentration and grow at pH 5.0-12.0, 5.0-11.0 and 5.0-11.0, respectively. Phylogenetic results based on 16S rRNA gene sequences showed that the three isolates belonged to the genus Nocardioides and were identified as representing three novel species based on 78.0-93.1 % average nucleotide identity and 21.3-50.0 % DNA-DNA hybridization values with closely related reference strains. Strains SOB44T, SOB72T and SOB77T showed highest 16S rRNA gene sequence similarity to Nocardioides salarius CL-Z59T (99.2 %), Nocardioides deserti SC8A-24T (99.2 %) and Nocardioides marmotae zg-579T (98.5 %), respectively. All three strains had MK-8(H4) as the respiratory quinone, iso-C16 : 0 as the major fatty acid, and phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol as the major polar lipids. The diagnostic diamino acid in the cell-wall peptidoglycan of all three isolates was ll-diaminopimelic acid. The DNA G+C contents of strains SOB44T, SOB72T and SOB77T were 71.1, 72.9 and 72.9 mol%, respectively. Based on the phenotypic, phylogenetic and genotypic data, strains SOB44T, SOB72T and SOB77T clearly represent three novel taxa within the genus Nocardioides, for which the names Nocardioides cremeus sp. nov. (type strain SOB44T=JCM 35774T= MCCC M28400T), Nocardioides abyssi sp. nov. (type strain SOB72T=JCM 35775T=MCCC M28318T) and Nocardioides oceani sp. nov. (type strain SOB77T=JCM 35776T=MCCC M28544T) are proposed.


Assuntos
Actinobacteria , Actinomycetales , Ácidos Graxos/química , Fosfolipídeos/química , Nocardioides , Filogenia , Oceano Pacífico , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Bactérias Aeróbias/genética
6.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37660276

RESUMO

Narrow substrate ranges can impact heavily on the range of applications and hence commercial viability of candidate bioremediation enzymes. Here we show that an ester hydrolase from Nocardioides strain SG-4 G has potential as a bioremediation agent against various pollutants that can be detoxified by hydrolytic cleavage of some carboxylester, carbamate, or amide linkages. Previously we showed that a radiation-killed, freeze-dried preparation (ZimA) of this strain can rapidly degrade the benzimidazole fungicide carbendazim due to the activity of a specific ester hydrolase, MheI. Here, we report that ZimA also has substantial hydrolytic activity against phthalate diesters (dimethyl, dibutyl, and dioctyl phthalate), anilide (propanil and monalide), and carbamate ester (chlorpropham) herbicides under laboratory conditions. The reaction products are substantially less toxic, or inactive as herbicides, than the parent compounds. Tests of strain SG-4 G and Escherichia coli expressing MheI found they were also able to hydrolyse dimethyl phthalate, propanil, and chlorpropham, indicating that MheI is principally responsible for the above activities.


Assuntos
Herbicidas , Propanil , Clorprofam , Nocardioides , Biodegradação Ambiental , Esterases , Carbamatos , Escherichia coli/genética , Ésteres
7.
Artigo em Inglês | MEDLINE | ID: mdl-37755157

RESUMO

Two novel Gram-positive bacteria designated as strains STR2T and STR3T were isolated from the rhizosphere of a Pinus densiflora sample collected from Goyang-si, Republic of Korea. Strains STR2T and STR3T were aerobic, rod shaped, non-sporulated, catalase negative, oxidase negative and non-motile bacteria. They grew at 15-37 °C (optimum, 25-30 °C), at pH 6.0-11.0 (optimum, pH 7.0) and in the presence of 0-2% NaCl (optimum, 0 %, w/v). The chemotaxonomic and morphological characteristics of the novel strains were consistent with those of the members of Nocardioides. The phylogenetic analysis of the 16S rRNA gene sequences revealed that STR2T was closely related to N. cavernae YIM A1136T (99.3 %) and N. flavus Y4T (99.1 %), and STR3T was closely related to N. exalbidus DSM 22017T (99.0 %), N. baculatus G10T (98.8 %) and N. hwasunensis HFW-21T (98.7 %). The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values of STR2T and STR3T with the most closely related strains that have publicly available whole genomes were 83.1-89.8 %, 80.9-89.6% and 26.2-39.1 %, respectively. The cell-wall peptidoglycan of strain STR2T and STR3T contained ll-diaminopimelic acid as the diagnostic amino acid. The major fatty acids in STR2T and STR3T were iso-C16 : 0 and C17 : 1 ω8c, and the predominant quinone was MK-8(H4). Their polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and other polar lipids. The draft genome sequences showed that the genomic DNA G+C content of STR2T and STR3T were both 72.2 mol%. Physiological and biochemical tests and 16S rRNA sequence analysis clearly revealed that STR2T and STR3T could represent novel Nocardioides species. Their proposed names were as follows: Nocardioides pini sp. nov. for strain STR2T (=KACC 22784T=TBRC 16336T) and Nocardioides pinisoli sp. nov. for strain STR3T (= KACC 22785T=TBRC 16337T).


Assuntos
Actinobacteria , Pinus , Nocardioides , Actinomyces , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Aminoácidos
8.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762246

RESUMO

Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus Nocardioides, for which the name Nocardioides arcticus sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM H2O2 stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by H2O2; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.


Assuntos
Peróxido de Hidrogênio , Nocardioides , Peróxido de Hidrogênio/farmacologia , Transcriptoma , Transporte Biológico , Ferro
9.
Artigo em Inglês | MEDLINE | ID: mdl-37486345

RESUMO

A Gram-positive, aerobic actinomycete, designated strain KLBMP 9356T, was isolated from weathered potash tailings soil sampled in Xuzhou, Jiangsu Province, PR China. The colonies were cream-coloured, convex and rounded. The optimal growth conditions of strain KLBMP 9356T were 1 % (w/v) NaCl, 28 °C and pH 7. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain KLBMP 9356T showed the highest similarity to Nocardioides zhouii CGMCC 1.11084T (98.9 %) and Nocardioides glacieisoli CGMCC 1.11097T (98.7 %). Results from two tree-making algorithms supported the position that strain KLBMP 9356T forms a stable clade with N. zhouii CGMCC 1.11084T and N. glacieisoli CGMCC 1.11097T. Strain KLBMP 9356T exhibited low digital DNA-DNA hybridization values with N. zhouii CGMCC 1.11084T (27.6 %) and N. glacieisoli CGMCC 1.11097T (31.4 %). The average nucleotide identity values between strain KLBMP 9356T and N. zhouii CGMCC 1.11084T and N. glacieisoli CGMCC 1.11097T were 83.8% and 85.9%, respectively. The peptidoglycan in the cell wall of the novel strain was ll-2,6-diaminopimelic acid and the predominant menaquinone was MK-8(H4). The major fatty acids (>10 %) were C17:1ω8c and C18:1ω9c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, lyso-phospatidylglycerol and phosphatidylinositol. The genomic DNA G+C content was 71.6 mol%. Based on its morphological, chemotaxonomic and phylogenetic characteristics, strain KLBMP 9356T represents a novel species of the genus Nocardioides, for which the name Nocardioides potassii sp. nov. is proposed. The type strain is KLBMP 9356T (=CGMCC 4.7738T=NBRC 115493T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Nocardioides , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-37232277

RESUMO

A polyphasic taxonomic characterization of two novel strain pairs (designated zg-579T/zg-578 and zg-536T/zg-ZUI104) isolated from the faeces of Marmota himalayana was conducted based on phylogenetic analysis of the nearly full-length 16S rRNA gene and genome, digital DNA-DNA hybridization, ortho-average nucleotide identity (Ortho-ANI), and phenotypic and chemotaxonomic traits. Comparative analysis of the nearly full-length 16S rRNA gene sequences showed that strain zg-579T was most closely related to Nocardioides dokdonensis FR1436T (97.57 %) and Nocardioides deserti SC8A-24T (97.36 %), whereas strain zg-536T had the highest similarity to Nocardioides caeni MN8T (98.33 %), Nocardioides convexus W2-2-3T (98.26 %) and Nocardioides daeguensis 2C1-5T (98.19 %). Low levels of DNA-DNA relatedness and Ortho-ANI values (19.8-31.0 %/78.6-88.2 %, zg-579T; 19.9-31.3 %/78.8-86.2 %, zg-536T) between the two new type strains and previously known species within the genus Nocardioides support the hypothesis that the four newly characterized strains could be considered to represent two novel species within this genus. The dominant cellular fatty acids found in strain pair zg-536T/zg-ZUI104 were iso-C16 : 0 and C18 : 1 ω9c, whereas C17 : 1 ω8c was major component in zg-579T/zg-578. Galactose and ribose were the main cell-wall sugars in these two new strain pairs. Diphosphatidylglycerol (DPG), phosphatidylcholine, phosphatidylglycerol (PG) and phosphatidylinositol (PI) were the major polar lipids in zg-579T, whereas DPG, PG and PI predominated in zg-536T. Both strain pairs had MK8(H4) as the major respiratory quinone and ll-diaminopimelic acid as the major cell-wall peptidoglycan. The optimal growth conditions for the two novel strain pairs were 30 °C, pH 7.0 and 0.5 % NaCl (w/v). Based on these polyphasic characterizations, two novel species within the genus Nocardioides are proposed, i.e. Nocardioides marmotae sp. nov. and Nocardioides faecalis sp. nov., with zg-579T (=CGMCC 4.7663T=JCM 33892T) and zg-536T (=CGMCC 4.7662T=JCM 33891T) as the type strains.


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , Nocardioides , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Cardiolipinas
11.
Artigo em Inglês | MEDLINE | ID: mdl-36940140

RESUMO

An actinobacterial strain designated MMS20-HV4-12T, displaying a high hydrolytic potential for various substrates, was isolated from a riverside soil sample and characterized by polyphasic taxonomic analysis. Growth occurred at 10-37 °C (optimum, 30°C), with NaCl concentrations of 0-4 % (optimum, 0 %) and at pH 7-9 (optimum, pH 8). MMS20-HV4-12T was catalase-positive, oxidase-negative, rod-shaped and formed creamy white-coloured colonies. Based on the results of 16S rRNA gene sequence analysis, MMS20-HV4-12T was found to be mostly related to the type strains of Nocardioides alpinus (98.3 % sequence similarity), Nocardioides furvisabuli (98.1 %) and Nocardioides zeicaulis (98.0 %). MMS20-HV4-12T showed optimal growth on Reaoner's 2A agar, forming white-coloured colonies. The diagnostic polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol, the major fatty acids were iso-C16 : 0, C17 : 1 ω8c and 10-methyl-C17 : 0, the major isoprenoid quinone was MK-8(H4), the diagnostic cell-wall sugar was galactose, and the cell-wall diamino acid was ll-diaminopimelic acid. The genome of MMS20-HV4-12T was 4.47 Mbp in size with a G+C content of 72.9 mol%. The genome based analysis indicated low relatedness between MMS20-HV4-12T and all compared species of Nocardioides, as the highest digital DNA-DNA hybridization and the orthologous average nucleotide identity values were 26.8 and 83.8% respectively. Based on genotypic, phenotypic and phylogenomic characterization, MMS20-HV4-12T evidently represents a novel species of genus Nocardioides, for which the name Nocardioides okcheonensis sp. nov. (type strain=MMS20-HV4-12T=KCTC 49651T=LMG 32360T) is proposed.


Assuntos
Nocardioides , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Nocardioides/classificação , Nocardioides/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Syst Appl Microbiol ; 46(2): 126391, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36621108

RESUMO

Strains BSK12Z-3T and BSK12Z-4, two Gram-stain-positive, aerobic, non-spore-forming strains, were isolated from Shankou Mangrove Nature Reserve, Guangxi Zhuang Autonomous Region, China. The diagnostic diamino acid in the cell-wall peptidoglycan of strain BSK12Z-3T was LL-diaminopimelic acid and MK-8(H4) was the predominant menaquinone. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phospholipid (PL). The major fatty acids was iso-C16:0. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the two strains fell within the genus Nocardioides, appearing most closely related to Nocardioides ginkgobilobae KCTC 39594T (97.5-97.6 % sequence similarity) and Nocardioides marinus DSM 18248T (97.4-97.6 %). Genome-based phylogenetic analysis confirmed that strains BSK12Z-3T and BSK12Z-4 formed a distinct phylogenetic cluster within the genus Nocardioides. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains BSK12Z-3T, BSK12Z-4 with their most related species N. marinus DSM18248T were within the ranges of 77.2-77.3 % and 21.3-21.4 %, respectively, clearly indicated that strains BSK12Z-3T, BSK12Z-4 represented novel species. Strains BSK12Z-3T and BSK12Z-4 exhibited 99.9 % 16S rRNA gene sequence similarity. The ANI and dDDH values between the two strains were 97.8 % and 81.1 %, respectively, suggesting that they belong to the same species. However, DNA fingerprinting discriminated that they were not from one clonal origin. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizatons, strains BSK12Z-3T and BSK12Z-4 could be classified as a novel species of the genus Nocardioides, for which the name Nocardioides bruguierae sp. nov., is proposed. The type strain is BSK12Z-3T (=CGMCC 4.7709T = JCM 34554T).


Assuntos
Actinomycetales , Rhizophoraceae , China , Rhizophoraceae/genética , Nocardioides/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Genômica , Vitamina K 2/química
13.
J Hazard Mater ; 446: 130708, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608577

RESUMO

Demethylthio is one of the most important ways for microorganisms to metabolize triazine herbicides. Previous studies have found that the initial reaction of prometryn catabolism in Leucobacter triazinivorans JW-1 was the hydroxylation of its methylthio group, however, the corresponding functional enzyme was not yet clear. In this study, the gene proA was responsible for the initial step of prometryn catabolism from the strain JW-1 was cloned and expressed, and the purified amidohydrolases ProA have the ability to transform prometryn to 2-hydroxypropazine and methanethiol. The optimized reaction temperature and pH of ProA were 45 °C and 7.0, respectively, and the kinetic constants Km and Vmax of ProA for the catalysis of prometryn were 32.6 µM and 0.09 µmol/min/mg, respectively. Molecular docking analyses revealed that different catalysis efficiency of ProA and TrzN (Nocardioides sp. C190) for prometryn and atrazine was due to non-covalent changes in amino acid residues. Our findings provide new insights into the understanding of s-triazine catabolism at the molecular level.


Assuntos
Herbicidas , Prometrina , Prometrina/metabolismo , Triazinas/metabolismo , Simulação de Acoplamento Molecular , Herbicidas/metabolismo , Amidoidrolases , Catálise , Nocardioides/metabolismo
14.
Curr Microbiol ; 80(2): 60, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588136

RESUMO

A Gram-staining-positive, non-motile, aerobic, spherical actinobacterium, designated WL0053T, was isolated from the coastal sediment of Nantong City, Jiangsu Province, China. The 16S rRNA gene sequence of strain WL0053T exhibited the highest similarities to Nocardioides mesophilus MSL-22T (98.0%), N. massiliensis GD12T (97.8%), Marmoricola bigeumensis MSL-05T (97.6%), and N. jensenii DSM 20641T (97.3%). The polyphasic taxonomic approach was used for the identification of strain WL0053T. This strain formed white, round, and smooth colonies and grew in the presence of 0-18% (w/v) NaCl (optimum, 0-4.0%), at pH 6.0-9.0 (optimum, pH 7.0) and at 20-37 °C (optimum, 28 °C). The main cellular fatty acids comprised of C17:1 ω8c, C18:1 ω9c, and iso-C16:0. The genomic DNA G + C content was 71.9%. The predominant quinone was MK-8(H4), and the major polar lipid consisted of phosphatidylcholine, glycolipid, phosphatidylethanolamine, and two unidentified phospholipids. Phylogenetic trees of 16S rRNA gene and bac120 gene set indicted that strain WL0053T was closely related to the species N. iriomotensis and N. mesophilus, while these two species clustered in a separate clade together with M. caldifontis YIM 730233T in the bac120 tree. Combined with the analysis of average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH), it can be considered that the strain WL0053T is a new member of the genus Nocardioides and is proposed to be named as Nocardioides jiangsuensis sp. nov.. The type strain is WL0053T (=MCCC 1K05897T=JCM 34671T=GDMCC 4.192T). Furthermore, based on the fact that the genera Nocardioides and Marmoricola both appeared polyphyletic with no significant difference on phenotypic and chemotaxonomic traits, we proposed to reclassify the genus Marmoricola as Nocardioides.


Assuntos
Actinomycetales , Nocardioides , Nocardioides/genética , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Ácido Diaminopimélico/química , Vitamina K 2/química , Fosfolipídeos/química , Ácidos Graxos/química
15.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36208423

RESUMO

Six Gram-stain-positive, aerobic and irregular-rod-shaped actinobacteria (ZJ1313T, ZJ1307, MC1495T, Y192, 603T and X2025) were isolated from the Qinghai-Tibet Plateau of China and were characterized using a polyphasic taxonomic method. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the six new strains formed three distinct clusters within the genus Nocardioides, and strains ZJ1313T and ZJ1307 were most closely related to N. solisilvae JCM 31492T (16S rRNA gene sequence similarity, 98.0 %), MC1495T and Y192 to N. houyundeii 78T (98.5 %), and 603T and X2025 to N. dokdonensis JCM 14815T (97.6 %). The digital DNA-DNA hybridization values of strains ZJ1313T, MC1495T and 603T among each other and with type strains of their closest relatives were all below the 70 % cut-off point, but values within each pair of new strains were all higher than the threshold. The major fatty acids of these strains were iso-C16 : 0, C17 : 1 ω8c or C18 : 1 ω9c. MK-8(H4) was the predominant respiratory menaquinone and ʟʟ-2,6-diaminopimelic acid was the diagnostic diamino acid. All the strains shared diphosphatidylglycerol (predominant), phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol as the common polar lipids, with minor difference in the types of unidentified phospholipids, glycolipids and lipids. The G+C contents based on genomic DNA of strains ZJ1313T, MC1495T and 603T were 72.5, 72.1 and 73.2 mol%, respectively. The above results suggested that strain pairs ZJ1313T/ZJ1307, MC1495T/Y192 and 603T/X2025 represent three new species of genus Nocardioides, for which the names Nocardioides ochotonae sp. nov. (ZJ1313T=GDMCC 4.177T=KCTC 49537T=JCM 34185T), Nocardioides campestrisoli sp. nov. (MC1495T=GDMCC 4.176T=KCTC 49536T=JCM 34307T) and Nocardioides pantholopis sp. nov. (603T=CGMCC 4.7510T=DSM 106494T) are proposed accordingly.


Assuntos
Cardiolipinas , Nocardioides , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos , Fosfatidilcolinas , Fosfatidilinositóis , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Vitamina K 2/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-35834405

RESUMO

An actinobacterial strain, designated R-N-C8T, was isolated from the rhizosphere soil of Arabidopsis thaliana collected in Yunnan Province, south-west China. Based on the results of 16S rRNA gene sequence analysis, strain R-N-C8T had highest similarity to Nocardioides terrae CGMCC 1.7056T (96.5%), Nocardioides opuntiae KCTC 19804T (96.3%) and Nocardioides currus IB-3T (96.1%), and lower than 96.0 % similarity to other members of the genus Nocardioides. Phylogenetic trees based on 16S rRNA gene sequences indicated that strain R-N-C8T formed an isolated branch with N. terrae CGMCC 1.7056T and N. opuntiae KCTC 19804T. The polar lipids contained phosphatidylglycerol, diphosphatidylglycerol, one unidentified phosphoglycolipid and four unidentified phospholipids in the cellular membrane. The major fatty acids were identified as iso-C16 : 0, anteiso-C17 : 0, iso-C17 : 0, summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl) and iso-C15 : 0. The predominant respiratory quinone was MK-8(H4) and ll-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The genomic DNA G+C content was 70.9 mol%. The orthologous average nucleotide identiy values between N. terrae CGMCC 1.7056T, N. currus IB-3T and strain R-N-C8T were 77.1 and 75.1 %, respectively. DNA-DNA hybridization values between N. terrae CGMCC 1.7056T, N. currus IB-3T and strain R-N-C8T were 20.7 and 19.9 % respectively. Data from phenotypic and genotypic analyses supported that strain R-N-C8T represents a new species of Nocardioides, for which the name Nocardioides nematodiphilus sp. nov. is proposed. The type strain is R-N-C8T (=CGMCC 1.18723T= KCTC 49528T).


Assuntos
Actinomycetales , Arabidopsis , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Nocardioides , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo
17.
Syst Appl Microbiol ; 45(4): 126339, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35714383

RESUMO

From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.


Assuntos
Actinomycetales , Nocardioides , Técnicas de Tipagem Bacteriana , Composição de Bases , Biofilmes , Carbamazepina , DNA Bacteriano/genética , Ácidos Graxos/análise , Ibuprofeno , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-35647794

RESUMO

A bacterial strain designated as G188T was isolated from ginseng field soil in the Republic of Korea. Phylogenetic analysis of 16S rRNA gene sequences showed that strain G188T formed a distinct lineage within the genus Nocardioides, family Nocardioidaceae, order Propionibacteriales. Sequence similarity revealed that strain G188T was most closely related to Nocardioides iriomotensis IR27-S3T (97.7 % 16S rRNA similarity). The genome size of strain G188T was 4 901 775 bp, and the genomic DNA G+C content was 72.3 mol%. The average nucleotide identity and DNA-DNA hybridization values with other Nocardioides species were less than 75.6 and 20.1 %, respectively. The main fatty acids of strain G188T were C17 : 0, C17 : 1 ω8c and iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol, and the major respiratory quinone was menaquinone 8, supporting that strain G188T was affiliated with the genus Nocardioides. Based on biochemical, chemotaxonomic and phylogenetic analyses, the novel species Nocardioides panacis G188T (KACC 21695T=LMG 31733T) is proposed.


Assuntos
Actinomycetales , Panax , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Nocardioides , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
19.
Artigo em Inglês | MEDLINE | ID: mdl-35511243

RESUMO

A Gram-stain-positive, aerobic, non-pigmented and non-motile actinobacterium, designated strain SCSIO 67246T, was isolated from a stony coral sample collected from the Sanya sea area, Hainan province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SCSIO 67246T shared the highest similarities with Nocardioides rotundus MCCC 1A10561T (96.5 %) and Nocardioides sonneratiae KCTC 39565T (96.1%). The novel strain grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-10 % (w/v) NaCl. The genome length of strain SCSIO 67246T was 3.52 Mbp with a DNA G+C content of 72.0 mol% and 3397 protein-coding genes. The novel strain showed an average nucleotide identity value of 76.5 % and a digital DNA-DNA hybridization value of 20.1 % with N. rotundus MCCC 1A10561T. Strain SCSIO 67246T contained MK-8(H4) as the major menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and five phospholipids. The major cellular fatty acids were iso-C16 : 0, C17 : 1 ω8c and summed feature 9 (iso-C17 : 1 ω9c/10-methyl C16 : 0). ll-2,6-Diaminopimelic acid was the diagnostic diamino acid. The whole-cell sugars were galactose, glucose and ribose. Based on this polyphasic taxonomic study, strain SCSIO 67246T represents a novel species of the genus Nocardioides, for which the name Nocardioides coralli sp. nov. is proposed. The type strain is SCSIO 67246T (=MCCC 1K06251T=KCTC 49719T).


Assuntos
Actinobacteria , Actinomycetales , Antozoários , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Nocardioides , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-35482521

RESUMO

Strain NGK65T, a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65T hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 °C, in 0-1% NaCl and at pH 7.5-8.0. Glycerol, d-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate, sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C16:0 followed by iso-C17:0 and C18:1 ω9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3γ, with ll-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65T belongs to the genus Nocardioides (phylum Actinobacteria), appearing most closely related to Nocardioides daejeonensis MJ31T (98.6%) and Nocardioides dubius KSL-104T (98.3%). The genomic DNA G+C content of strain NGK65T was 68.2%. Strain NGK65T and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9% as well as digital DNA-DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65T can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65T (=DSM 113112T=NCCB 100846T).


Assuntos
Actinomycetales , Nocardioides , Alcanos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , Plásticos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...